Planetary Time Scales
Time Martian Geological timescale

Planetary Timescales

Martian Geological timescale

Deep Time
   Geological Timescale
      Planetary Time Scales
         Lunar Geological timescale
         Martian Geological timescale
         Terran Geological Timescale

Mars. Image from Digital Vision/Getty Images, copied from How Stuff Works

Harried editor's note: The following is copied verbatum (apart from editing to condense the quoted material, from Wikipedia - The Geology of Mars - MAK110723

Geological history

Much of a planet's history can be deciphered by looking at its surface and asking what came first and what came next. For example, a lava flow that spreads out and fills a large impact crater is clearly younger than the crater, and a small crater on top of the same lava flow is younger than both the lava and the larger crater. This principle is called the law of superposition. Another stratigraphic principle used on planets where impact craters are well preserved is that of crater number density. The number of craters greater than a given size per unit surface area (usually million km2) provides a relative age for that surface. Heavily cratered surfaces are old, and sparsely cratered surfaces are young. Old surfaces have a lot of big craters, and young surfaces have mostly small craters or none at all.

Relative vs. absolute ages

By using stratigraphic principles, we can usually delineate rock units only in terms of their relative age to each other. For example, knowing that Mesozoic rock strata making up the Cretaceous System lie on top of (and are therefore younger than) rocks of the Jurassic System tells us nothing about how long ago the Cretaceous or Jurassic Periods were. Other methods, such as radiometric dating, are needed to determine absolute ages in geologic time. On Earth, we have this information and know that the Cretaceous Period began around 146 million years ago (Mya) and ended 65 Mya with the extinction of the dinosaurs. Absolute ages are also known for selected rock units of the Moon based on samples returned to Earth.

Assigning absolute ages to rock units on Mars is much more problematic. Numerous attempts[1][2][3] have been made over the years to determine an absolute Martian chronology (timeline) by comparing estimated impact cratering rates for Mars to those on the Moon. If we know with precision the rate of impact crater formation on Mars by crater size per unit area over geologic time (the production rate or flux), then crater densities also provide a way to determine absolute ages.[4] Unfortunately, practical difficulties in crater counting[5] and uncertainties in estimating the flux still create huge uncertainties in the ages derived from these methods. Martian meteorites have provided datable samples that are consistent with ages calculated thus far,[6] but the locations on Mars from where the meteorites came (provenance) are unknown, limiting their value as chronostratigraphic tools. Absolute ages determined by crater density should therefore be taken with some skepticism.[7]

Crater density timescale

Studies of impact crater densities on the Martian surface[8] have delineated three broad periods in the planet's geologic history.[9] The periods were named after places on Mars that have large-scale surface features, such as large craters or widespead lava flows, that date back to these time periods. The absolute ages given here are only approximate. From oldest to youngest, the time periods are:

Martian crater density timescale

Pre-Noachian Represents the interval from the accretion and differentiation of the planet about 4.5 billion years ago (Gya) to the formation of the Hellas impact basin, between 4.1 and 3.8 Gya.[10] Most of the geologic record of this interval has been erased by subsequent erosion and high impact rates. The crustal dichotomy is thought to have formed during this time, along with the Argyre and Isidis basins.

Noachian Period (named after Noachis Terra): Formation of the oldest extant surfaces of Mars between 4.1 and about 3.7 billion years ago (Gya). Noachian-aged surfaces are scarred by many large impact craters. The Tharsis bulge is thought to have formed during the Noachian, along with extensive erosion by liquid water producing river valley networks. Large lakes or oceans may have been present.

Hesperian Period (named after Hesperia Planum): 3.7 to approximately 3.0 Gya. The Hesperian Period is marked by the formation of extensive lava plains. The formation of Olympus Mons likely began during this period.[11] Catastrophic releases of water carved extensive outflow channels around Chryse Planitia and elswhere. Ephemeral lakes or seas formed in the northern lowlands.

Amazonian Period (named after Amazonis Planitia): 3.0 Gya to present. Amazonian regions have few meteorite impact craters but are otherwise quite varied. Lava flows, glacial/periglacial activity, and minor releases of liquid water continued during this period.

The date of the Hesperian/Amazonian boundary is particularly uncertain and could range anywhere from 3.0 to 1.5 Gya.[12] Basically, the Hesperian is thought of as a transitional period between the end of heavy bombardment and the cold, dry Mars seen today.

Mineral alteration timescale

In 2006, researchers using data from the OMEGA Visible and Infrared Mineralogical Mapping Spectrometer on board the Mars Express orbiter proposed an alternative Martian timescale based on the predominant type of mineral alteration that occurred on Mars due to different styles of chemical weathering in the planet's past. They proposed dividing the history of the Mars into three eras: the Phyllocian, Theiikian and Siderikan.[13][14]

Martian mineral alteration timescale

Phyllocian (named after phyllosilicate or clay minerals that characterize the era) lasted from the formation of the planet until around the Early Noachian (about 4.0 Gya). OMEGA identified outcropping of phyllosilicates at numerous locations on Mars, all in rocks that were exclusively Pre-Noachian or Noachian in age (most notably in rock exposures in Nili Fossae and Mawrth Vallis). Phyllosillicates require a water-rich, alkaline environment to form. It correlates with the age of valley network formation on Mars, suggesting an early climate that was conducive to the presence of abundant surface water. It is thought that deposits from this era are the best candidates in which to search for evidence of past life on the planet.

Theiikian (named after sulfurous in Greek, for the sulfate minerals that were formed) lasted until about 3.5 Gya. It was an era of extensive volcanism, which released large amounts of sulfur dioxide (SO2) into the atmosphere. The SO2 combined with water to create a sulfuric acid-rich environment that allowed the formation of hydrated sulfates (notably kieserite and gypsum).

Siderikan (named for iron in Greek, for the iron oxides that formed) lasted from 3.5 GYa until the present. With the decline of volcanism and available water, the most notable surface weathering process has been the slow oxidation of the iron-rich rocks by atmospheric peroxides producing the red iron oxides that give the planet its familiar color.


[1] Neukum, G.; Wise, D.U. (1976). "Mars: A Standard Crater Curve and Possible New Time Scale". Science 194 (4272): 1381–1387. Bibcode 1976Sci...194.1381N. doi:10.1126/science.194.4272.1381. PMID 17819264.

[2] Neukum, G.; Hiller, K. (1981). "Martian ages". J. Geophys. Res. 86 (B4): 3097–3121. Bibcode 1981JGR....86.3097N. doi:10.1029/JB086iB04p03097.

[3] Hartmann, W.K.; Neukum, G. (2001). Cratering Chronology and Evolution of Mars. In Chronology and Evolution of Mars, Kallenbach, R. et al. Eds., Space Science Reviews, 96: pp. 105–164.

[4] Hartmann, W.K. (2005). "Martian Cratering 8: Isochron Refinement and the Chronology of Mars". Icarus 174 (2): 294. Bibcode 2005Icar..174..294H. doi:10.1016/j.icarus.2004.11.023.

[5] Hartmann, W.K. (2007). "Martian cratering 9: Toward Resolution of the Controversy about Small Craters". Icarus 189 (1): 274–278. Bibcode 2007Icar..189..274H. doi:10.1016/j.icarus.2007.02.011.

[6] Hartmann, W. (2003). A Traveler's Guide to Mars: The Mysterious Landscapes of the Red Planet. New York: Workman Publishing. p. 35

[7] Carr, Michael (2006). The surface of Mars. Cambridge, UK: Cambridge University Press., p. 40

[8] Tanaka, K.L. (1986). The Stratigraphy of Mars. J. Geophys. Res., Seventeenth Lunar and Planetary Science Conference Part 1, 91(B13), E139–E158.

[9] Caplinger, Mike. "Determining the age of surfaces on Mars". Archived from the original on February 19, 2007. Retrieved 2007-03-02.

[10] Carr, M.H.; Head, J.W. (2010). "Geologic History of Mars". Earth Planet. Sci. Lett. 294: 185–203. Bibcode 2010E&PSL.294..185C. doi:10.1016/j.epsl.2009.06.042.

[11] Fuller, Elizabeth R. (2002). "Amazonis Planitia: The role of geologically recent volcanism and sedimentation in the formation of the smoothest plains on Mars" (PDF). Journal of Geophysical Research 107 (E10). Bibcode 2002JGRE..107.5081F. doi:10.1029/2002JE001842.

[12] Hartmann 2003, p. 34

[13] Williams, Chris. "Probe reveals three ages of Mars". Retrieved 2007-03-02.

[14] Bibring, Jean-Pierre; Langevin, Y; Mustard, JF; Poulet, F; Arvidson, R; Gendrin, A; Gondet, B; Mangold, N et al. (2006). "Global Mineralogical and Aqueous Mars History Derived from OMEGA/Mars Express Data". Science 312 (5772): 400–404. Bibcode 2006Sci...312..400B. doi:10.1126/science.1122659. PMID 16627738.

contact me

Wikipedia - GNU open source license/Creative Commons